


ni.com

Bringing Down The Barrier - A Pragmatic View 
on Software Design

Jeffrey Habets

Founder / CEO

jeffrey@vi-tech.nl twitter.com/JeffreyHabets linkedin.com/in/vitech

mailto:jeffrey@vi-tech.nl
https://twitter.com/JeffreyHabets
https://www.linkedin.com/in/vitech


Quote

Perhaps the greatest strength of an object-oriented 

approach to development is that it offers a mechanism 

that captures a model of the real world.

Grady Booch

ά

έ



Your takeaways

ÁStarting with Object Oriented Development is not as hard as it may seem at 

first glance

ÁLabVIEW classes are easy!

ÁConfidence to take that first step

ÁYou know tools that help you visualize the big picture and give you a huge 

productivity boost with OOD / OOP in LabVIEW and NXG

ÁYou’ll know just enough UML to be (not too) dangerous



Disclaimer

Á I am not a UML or OO guru

Á I use UML in a pragmatic way (which is ñjust about correctò)

ÁYes, I hope you will start using the tools I will show you later on J



But wait…

ÁIt’s such a lot of extra work, all these extra files

ÁCreating classes and it’s components is a hassle, a lot of extra clicks

ÁI don’t need it!

ÁAll these frameworks I hear of all the time, the terminology, principles, 

design patterns… Where do I start?

(But, you doéYou just donôt know it yet! )



The Why

ÁMaintainability (be nice to future you!)

ÁExtensibility (Ideally only add code to add functionality)

ÁTestability (modular code is easier to (automatically) test)

ÁReliability (Result of all of the above!)

ÁYou can use UML to communicate your ideas!

ÁJust need to stick to some basic rules



Quote

Perhaps the greatest strength of an object-oriented 

approach to development is that it offers a mechanism 

that captures a model of the real world.

Grady Booch

ά

έ



Basic Object Oriented Design Concepts

Three Pillars:

ÁEncapsulation

An object:

Á Encapsulates data and the methods that act upon that data

ÁGroup of VIs with a common responsibility

Á Inheritance

ÁDynamic Dispatching (Polymorphism)

Think in terms of objects and actions, instead of VIs and sub-VIs



Class diagram –A Measurement System

Public methods

Noun

Verbs

Attributes



Class diagram –A Measurement System

Aggregation

Public methods

Noun

Verbs

Attributes



Class diagram –A Measurement System

Composite Aggregation or Composition

Aggregation

Public methods

Noun

Verbs

Attributes



Class diagram –A Measurement System

Composite Aggregation or Composition

Aggregation

Public methods

Noun

Verbs

Attributes

Base class



Class diagram –A Measurement System

Composite Aggregation or Composition

Aggregation

Public methods

Noun

Verbs

Attributes
Child classes

Inheritance relation

Association

Base class



Class diagram –A Measurement System

Composite Aggregation or Composition

Aggregation

Public methods

Noun

Verbs

Attributes
Child classes

Inheritance relation

Base class

Main Owns MeasurementSystem

MeasurementSystem Contains

PowerSupply

NI_DMM Is a DMM

Debug Uses

SimulatedDMM

Association





OpenGDS Demo

opengds.github.io/ or 

http://sine.ni.com/nips/cds/view/p/lang/nl/nid/209038 for the NI supported version.

https://opengds.github.io/
http://sine.ni.com/nips/cds/view/p/lang/nl/nid/209038


UML Class Editor Add-on for LabVIEW NXG

Demo





Did you know..?

You can follow us on social

Á twitter.com/VI_Technologies

Á linkedin.com/company/vi-

technologies/

Á facebook.com/vitechnologies/

https://twitter.com/VI_Technologies
https://www.linkedin.com/company/vi-technologies/
https://www.facebook.com/vitechnologies/


Before you go,

take the survey.




