


ni.com

Bringing Down The Barrier - A Pragmatic View 
on Software Design

Jeffrey Habets

Founder / CEO

jeffrey@vi-tech.nl twitter.com/JeffreyHabets linkedin.com/in/vitech

mailto:jeffrey@vi-tech.nl
https://twitter.com/JeffreyHabets
https://www.linkedin.com/in/vitech


Quote

Perhaps the greatest strength of an object-oriented 

approach to development is that it offers a mechanism 

that captures a model of the real world.

Grady Booch

“

”



Your takeaways

▪ Starting with Object Oriented Development is not as hard as it may seem at 

first glance

▪ LabVIEW classes are easy!

▪ Confidence to take that first step

▪ You know tools that help you visualize the big picture and give you a huge 

productivity boost with OOD / OOP in LabVIEW and NXG

▪ You’ll know just enough UML to be (not too) dangerous



Disclaimer

▪ I am not a UML or OO guru

▪ I use UML in a pragmatic way (which is “just about correct”)

▪ Yes, I hope you will start using the tools I will show you later on ☺



But wait…

▪ It’s such a lot of extra work, all these extra files

▪ Creating classes and it’s components is a hassle, a lot of extra clicks

▪ I don’t need it!

▪ All these frameworks I hear of all the time, the terminology, principles, 

design patterns… Where do I start?

(But, you do… You just don’t know it yet! )



The Why

▪ Maintainability (be nice to future you!)

▪ Extensibility (Ideally only add code to add functionality)

▪ Testability (modular code is easier to (automatically) test)

▪ Reliability (Result of all of the above!)

▪ You can use UML to communicate your ideas!

▪ Just need to stick to some basic rules



Quote

Perhaps the greatest strength of an object-oriented 

approach to development is that it offers a mechanism 

that captures a model of the real world.

Grady Booch

“

”



Basic Object Oriented Design Concepts

Three Pillars:

▪ Encapsulation

An object:

▪ Encapsulates data and the methods that act upon that data

▪ Group of VIs with a common responsibility

▪ Inheritance

▪ Dynamic Dispatching (Polymorphism)

Think in terms of objects and actions, instead of VIs and sub-VIs



Class diagram – A Measurement System

Public methods

Noun

Verbs

Attributes



Class diagram – A Measurement System

Aggregation

Public methods

Noun

Verbs

Attributes



Class diagram – A Measurement System

Composite Aggregation or Composition

Aggregation

Public methods

Noun

Verbs

Attributes



Class diagram – A Measurement System

Composite Aggregation or Composition

Aggregation

Public methods

Noun

Verbs

Attributes

Base class



Class diagram – A Measurement System

Composite Aggregation or Composition

Aggregation

Public methods

Noun

Verbs

Attributes
Child classes

Inheritance relation

Association

Base class



Class diagram – A Measurement System

Composite Aggregation or Composition

Aggregation

Public methods

Noun

Verbs

Attributes
Child classes

Inheritance relation

Base class

Main Owns MeasurementSystem

MeasurementSystem Contains

PowerSupply

NI_DMM Is a DMM

Debug Uses

SimulatedDMM

Association





OpenGDS Demo

opengds.github.io/ or 

http://sine.ni.com/nips/cds/view/p/lang/nl/nid/209038 for the NI supported version.

https://opengds.github.io/
http://sine.ni.com/nips/cds/view/p/lang/nl/nid/209038


UML Class Editor Add-on for LabVIEW NXG

Demo





Did you know..?

You can follow us on social

▪ twitter.com/VI_Technologies

▪ linkedin.com/company/vi-

technologies/

▪ facebook.com/vitechnologies/

https://twitter.com/VI_Technologies
https://www.linkedin.com/company/vi-technologies/
https://www.facebook.com/vitechnologies/


Before you go,

take the survey.




