
Building a plug-in framework using 

classes and Packed Project Libraries… 

and use it on CompactRIO!

Jeffrey Habets Wim Tormans

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 1





Agenda

NIDays Eindhoven, Nov 22 2016 3

● Reasons to use plug-ins

● Basics of a plug-in architecture

● Why we used Packed Project Library plug-ins on cRIO targets

● Software platform overview

● The Do’s and Don’ts of PPL plug-ins on cRIO

Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 



Agenda

NIDays Eindhoven, Nov 22 2016 4

● Reasons to use plug-ins

● Basics of a plug-in architecture

● Why we used Packed Project Library plug-ins on cRIO targets

● Software platform overview

● The Do’s and Don’ts of PPL plug-ins on cRIO

Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 



Reasons to use plug-ins

Wikipedia: “A plug-in (or plugin, add-in, addin, add-on, addon, 

or extension) is a software component that adds a specific feature 

to an existing computer program. When a program supports plug-

ins, it enables customization.”

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 5

For example

• Enable third-party developers to create abilities which extend an 

application

• Support easily adding new features

• Reduce the size of an application

• Application is extensible without code modification to application



LabVIEW libraries (.lvlib) in a nutshell

● Are a way to modularize your code

● Provide namespacing (you can have VIs

with the same name in different lvlibs in

the same App)

● Give you scoping of code

(Public, Private, Community)

● A class (.lvclass) is a special

kind of library

● A XControl(.xctrl) is a special

kind of library

● A Packed Project Library (.lvlibp) is

a compiled version of a lvlib with all

its contents

Reasons to use plug-ins

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 6



Agenda

● Reasons to use plugins

● Basics of a plugin architecture

● Why we used packed project library plugins on cRIO targets

● Software platform overview

● The Do’s and Don’ts of PPL plugins on cRIO

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 7



Basics of a plug-in architecture

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 8

Application Plug-in
interface

Plug-inPlug-inPlug-in

Plug-in
manager

Services

PPLs

• Application operates independently of the plug-ins
• Plug-in typically needs the application to perform its job (not stand-alone)
• Plug-in needs to abide by the contract layed out by the application
• Important to get the contract ‘right’ the first time, think it through, really good!

‘Contract’



Basics of a plug-in architecture - example in LabVIEW

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 9

Application

Plug-in manager

Plug-in interface

Loads available plugins

This is all that needs
To be in your application

(build .exe)

No code!



Basics of a plug-in architecture - example in LabVIEW

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 10

Application

Plug-ins

Implement
the interface



Basics of a plugin architecture - example in LabVIEW

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 11

Demo



Agenda

● Reasons to use plugins

● Basics of a plugin architecture

● Why we used packed project library plugins on cRIO targets

● Software platform overview

● The Do’s and Don’ts of PPL plugins on cRIO

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 12



Why did we use PPLs plugins on cRIO targets

● Background info and requirements:

● Customer has multiple production plants worldwide

● Multiple production lines with multiple test stations

● 1 Software (and Hardware) platform  maintainability

● This platform should be modular and extendable 

● Previous production lines use cRIO (controlled by PXI)

● cRIO should work standalone

● Multiple types of DUTs, small differences in test.

● Flexible way of adjusting / extending the code, in the right 

place

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 13



Why did we use PPLs plugins on cRIO targets

cRIO software platform should be modular and closed:

● Modular:

Each component is separated and has an abstraction layer

 Plugins made with LabVIEW classes

● Closed:

Developers can only make changes where this is allowed.

Changes effective on the cRIO platform without rebuilding.

 Compiled code into a Packed Project Library

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 14



Agenda

● Reasons to use plugins

● Basics of a plugin architecture

● Why we used packed project library plugins on cRIO targets

● Software platform overview

● The Do’s and Don’ts of PPL plugins on cRIO

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 15



Software platform overview

Overview:

RT
MAIN

SEQ
PLUGIN

DUT Handshake
Sequence
Interface

UTILS
Device
Base

D
U

T 
A

D
U

T 
B

St
ar

tC
o

m
m

.

St
o

p
C

o
m

m
.

IN
I F

Ile

P
X

I

D
ig

it
al

 In
p

u
t

P
LC

Sc
an

n
er

C
A

N
C

o
m

m

Platform

Product Specific 
Plugins

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 16



Software platform overview

Utils and devices:

RT
MAIN

SEQ
PLUGIN

DUT UTILS
Device
Base

D
U

T 
A

D
U

T 
B

St
ar

tC
o

m
m

.

St
o

p
C

o
m

m
.

Sc
an

n
er

C
A

N
C

o
m

m

AMC CVT Log
Data
Man.

Platform

Product Specific 
Plugins

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 17



Agenda

● Reasons to use plugins

● Basics of a plugin architecture

● Why we used packed project library plugins on cRIO targets

● Software platform overview

● The Do’s and Don’ts of PPL plugins on cRIO

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 18



The DO’s and Don’ts of PPL plugins on cRIO

Use separate project files for each PPL

● Dependencies are shown

● Easy linking to correct PPL

● Exclude dependent PPLs in builds

● Configuration management

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 19



The DO’s and Don’ts of PPL plugins on cRIO

Make naming conventions and stick to them !!

● Plugin architecture = Dynamic loading

● Keep the PPL name the same as the LabVIEW class

"MyPlugin.lvlibp:MyPlugin.lvclass"

"MyPlugin.lvlibp:MyPluginForTest.lvclass" 

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 20



The DO’s and Don’ts of PPL plugins on cRIO

Dynamic loading with dependent PPLs (ex. DUT with device)

● First load your dependencies into memory

Define a standardized method to load dependent PPLs

Don’t build your dependencies into the same PPL

 Duplicates in memory, cross linking (ex. Base classes in main)

 Exceptions – no dependencies to other PPLs

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 21



The DO’s and Don’ts of PPL plugins on cRIO

Preloading PPLs at startup saves time

Loading PPLs when they are needed, costs time at that moment.

If they have loading issues, you have to wait untill they are 

loaded

Loading PPLs at start up does not cost extra time

in execution + you know if your PPLs have errors at startup

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 22



The DO’s and Don’ts of PPL plugins on cRIO

Rebuilding when a base PPL is changed (version change)

A new version of your base PPL breaks 

the executable and inheritance.

Rebuild your complete plugin structure

Rebuild your executable

 check out the available tools

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 23



The DO’s and Don’ts of PPL plugins on cRIO

MGI Solution Explorer

http://www.mooregoodideas.com/mgi-solution-explorer-2/

Automate your PPL build

Configure a list of project files in the correct order of building

Option to build for debug or release

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 24

http://www.mooregoodideas.com/mgi-solution-explorer-2/


The DO’s and Don’ts of PPL plugins on cRIO

Summary of unsupported features:

- Property nodes for UI properties

- Modifying Front Panel Objects of RT Target Vis

- Dynamically loading without first compiling for RT

- Debugging Reentrant VIs

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 25



The DO’s and Don’ts of PPL plugins on cRIO

Don’t use UI property nodes on Linux RT: (not only in PPLs)

There is no front panel for VIs that run on the RT target.

In some cases, you can establish a front panel connection 

 use some unsupported LabVIEW features 

The UI updates are asynchronous !!!

Most RT applications do not need a UI for every VI

Workaround with other types of controls

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 26



The DO’s and Don’ts of PPL plugins on cRIO

Starting active objects in plugins:

Don’t use the Set Control value method

Use start asynchronous call

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 27



The DO’s and Don’ts of PPL plugins on cRIO

Loading a PPL on Windows and Real-time:

Loading a PPL for RT on windows

Loading a PPL for windows on RT

– Vague error popup / Blocks deployment

– Only visible on cRIO monitor

Create separate build specs and build locations

You can load the same lvlib in PC AND RT Target

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 28



The DO’s and Don’ts of PPL plugins on cRIO

During development connect a monitor to your cRIO

(if possible)

Reentrant VI’s will not show when you run from PC

On your cRIO display, they will show.

Connecting to application (with PPLs) will cause errors

Remote panel connection will work

Highlight execution crashes LabVIEW

Solved in LabVIEW 2016

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 29



The DO’s and Don’ts of PPL plugins on cRIO

Summary:

● Use separate project files for each PPL

● Make naming conventions

● Dynamic loading, standardized method for dependencies

● Preload PPLs at program startup

● Rebuild all PPLs and exe when a base plugin changed

● Automate your builds

● Asynchronous call to start active objects

● Separate builds for windows and RT

● Use a monitor on cRIO or remote panels

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 30



Visit our booth.

NIDays Eindhoven, Nov 22 2016 Building a plugin-framework using classes and Packed Project Libraries… and use it on CompactRIO! 31


